NOTICE OF PUBLIC HEARING

Publish date: May 10, 2022
Proposal name: PUD – North Stanwood to Camano New Transmission Line
File number: 21-0051 (Shoreline Conditional Use and Flood Development), 21-0053 (Grading)
Documents available at: City of Stanwood Community Development Department www.stanwoodwa.org.
Lead Agency: Public Utility District No. 1 of Snohomish County
Contact Person: Tansy Schroeder, City Planner tansy.schroeder@stanwoodwa.org
SEPA Responsible Official: Christoph Enderlein, Environmental Affairs Senior Manager
Public hearing body: Stanwood Hearing Examiner
Public hearing date/time: Tuesday, June 7, 2022, at 10:00am
Public hearing location: Online via Zoom Meeting
Written comment deadline: Monday, June 6, 2022, at 5:00 pm

Proposal Description
The applicant is requesting a Shoreline Conditional Use Permit (SCUP) to install a new 115kV transmission line with 11 new poles (Phase 1) and complete maintenance work on an existing 115kV transmission line (Phase II). Phase II of the project includes the installation of two (2) new poles and the removal of one (1) existing pole and two (2) existing wooden poles. The project is located within the Urban Conservancy designation of the Snohomish River shoreline and requires the approval of this conditional use permit.

How to View the Project
All materials pertaining to this project may be examined online at www.stanwoodwa.org.

How to Comment
Your views for or against the proposed transmission line are invited by attendance, representation, letter, or email. Any person wishing to comment on this application may do so at the public hearing on the above-referenced date, place and time. You may also comment and become a party of record by sending written testimony, including a USPS return mailing address, to the project contact listed above at 10220 270th St. NE, Stanwood, WA 98292 on or before the written comment deadline stated above. If special accommodations due to a disability are needed please call (360)629-2181 48 hours prior to the meeting.
Proposed Site Plan
DETERMINATION OF NONSIGNIFICANCE (DNS)
(WAC 197-11-970)

Name of Proposal:
Stanwood to Camano Island 115kV Transmission Line

Description of Proposal:
Public Utility District No. 1 of Snohomish County proposes to build and operate a new 5.3 mile overhead 115kV line with fiber optic cable between North Stanwood and Camano substations (Phase I), and rebuild 2.7 miles of overhead 115kV line from the North Stanwood substation to Smith Road (Phase II). This project will provide additional electric service capacity and improve reliability to Camano Island. Construction for Phase I is anticipated from March through August, 2021. Phase II is slated for March through August 2022.

Proponent:
Public Utility District No. 1 of Snohomish County

Location of Proposal:
The project is located within the following Public Land Survey System locators:
Township 32N, Range 3E, Sections 20-24, 26, 27, 28, and Township 32N, Range 4E, Section 19.

Phase I
Beginning at Camano substation (Island County parcel ID number 163272), 525 E. North Camano Drive, continuing south across North Camano Drive into Freedom Park, then southeast across State Route 532, and adjacent to the south right-of-way to the intersection of S.R. 532 and 276th St. N.W., then north between two adjacent parcels with Snohomish County parcel ID numbers 32032400305200 and 32032400304700. At the Burlington Northern Santa Fe railroad right-of-way, the project turns east, continues south of the railroad tracks and continues about 800 feet east to the Old Pacific Highway and 276th St. N.W./Lovers Road. The project continues east on the south side of Lovers Road to the intersection with the north-south oriented Great Northern/BNSF railroad tracks. The final segment travels 1,300 feet southeast through parcel 32041900301600 to the North Stanwood substation (Snohomish County parcel ID number 32041900309000).

Phase II
Phase II begins on the north side of SR 532 at Smith Road (on Camano Island) and travels east on the north side of S.R. 532, spanning Davis Slough, and terminates on an existing steel pole. An existing steel pole line spans the West Pass Stillaguamish River and is not part of the project. From there, the project travels north along the west edge of the BNSF railroad tracks, then to the east along the north side of the tracks. The line continues east along the north side of the BNSF tracks/Lovers Road and crosses the Old Pacific Highway, where it meets the north-south oriented Great Northern/BNSF railroad right-of-way, and then turns southeast to the North Stanwood substation.

Lead Agency:
Public Utility District No. 1 of Snohomish County

The lead agency for this proposal has determined that it does not have a probable significant adverse impact on the environment. An environmental impact statement (EIS) is not required under RCW 43.21.030(c). This decision was made after review of a completed environmental checklist and other information on file with the lead agency. This information is available to the public upon request.
There is no comment period for this DNS.

This DNS is issued under WAC 197-11-340(2); the lead agency will not act on this proposal for 14 days from the date below. Comments must be submitted by June 6, 2019.

Contact Person: Christoph Enderlein
Signature: ___________________________ Date: May 23, 2019
Position/title: Senior Manager, Environmental Affairs
Telephone: 425-783-5556 or 1-877-783-1000 extension 5556

The threshold determination includes reference to and review of existing environmental information concerning the history, development and current site conditions of the project.

1. SEPA Environmental Checklist, PUD No. 1 of Snohomish County, Trinh Ly and Matt McReynolds, April 19, 2019
4. Exhibit C: Critical Area Study and Mitigation Plan for City of Stanwood. Wetland Resources, Inc., April 28, 2016,
5. Exhibit D: Wetland Delineation Report for Army Corps of Engineers. Wetland Resources, Inc., April 8, 2016,
7. Exhibit F: Stormwater Pollution Prevention Plan (Sheet 14/14 of LDA Site Plan) Wetland Resources, Inc., May 3, 2016,
9. Exhibit H: Cultural Resources Assessment for the Stanwood to Camano Island 115kV Transmission Line Project, Tierra Right-of-Way Services, Ltd. Report No. 2014-160, January 7, 2015 (Phase I), with August 7, 2015 Addendum (Phase II), May 19, 2016 Addendum (Phase II Modified Site Plan) and May 19, 2016 Addendum (Wetland Mitigation Site)

These documents were considered during the SEPA review process and will be made available to reviewing agencies with jurisdiction over the project as part of their permitting processes. Documents listed here may be available for review upon request.

Agencies Notified:

☑ U.S. Fish and Wildlife Service
☑ U.S. Army Corps of Engineers
☑ Swinomish Tribe
☑ Washington Department of Ecology
☑ City of Stanwood
☑ Washington Department of Fish and Wildlife
☑ Snohomish County
☑ Washington Department of Transportation
☑ BNSF Railroad
☑ N.O.A.A. Fisheries
☑ Stillaguamish Tribe
☑ Tulalip Tribes
☑ Washington Department of Archaeology and Historic Preservation
☑ Washington Department of Natural Resources
☑ Island County
Purpose of Checklist: The State Environmental Policy Act (SEPA), chapter 43.21C RCW, requires all governmental agencies to consider the environmental impacts of a proposal before making decisions. An environmental impact statement (EIS) must be prepared for all proposals with probable significant adverse impacts on the environment. The purpose of this checklist is to provide information to help the Responsible Official of the Public Utility District No. 1 of Snohomish County (the District), and any other agencies with jurisdiction, to identify impacts from a proposal (and to reduce or avoid impacts from the proposal, if it can be done) and to help the District decide whether an EIS is required.

A. BACKGROUND

1. Name of proposed project, if applicable:
 Snohomish County PUD No.1 – Stanwood to Camano Island 115kV Transmission Line

2. Name of applicant:
 Public Utility District No. 1 of Snohomish County

3. Address and phone number of applicant and contact person:
 P.U.D. No. 1 of Snohomish County
 P.O. Box 1107
 Everett, WA 98206-1107
 Project Leaders/Contact Persons:
 Phase I: Trinh Ly (425) 783-4308
 Phase II: Matt McReynolds (425) 783-5627

4. Date checklist prepared:
 4/19/2019

5. Agency Requesting Checklist:
 Public Utility District No. 1 of Snohomish County (District)

6. Proposed timing or schedule (including phasing, if applicable):
 The project is proposed to be constructed in two phases. Phase 1 construction is tentatively scheduled to be completed between March and August 2021. Phase 2 construction is tentatively scheduled to be completed between March and August 2022.

7. Do you have any plans for future additions, expansion, or further activity related to or connected with this proposal? If yes, explain.
 On-going maintenance of poles, conductors, underground conduit, and other appurtenances as needed to preserve electrical system reliability. This may include vegetation management to maintain clearance of 10 feet from all equipment, upgrades in capacity, pole relocations due to road right-of-way/easement alterations, temporary service outages, and other routine utility repair or maintenance that does not increase the footprint or size of facilities, and is within the existing utility corridor.

 ✚
8. List any environmental information you know about that has been prepared, or will be prepared, directly related to this proposal.

Environmental information that has been prepared:

- Critical Area Study, Biological Site Assessment, and Mitigation Plan for Island County. Wetland Resources, Inc., March 31, 2016,
- Critical Area Study, Habitat Management Plan, and Mitigation Plan for Snohomish County. Wetland Resources, Inc., April 18, 2016,
- Critical Area Study and Mitigation Plan for City of Stanwood. Wetland Resources, Inc., April 19, 2016,
- Wetland Delineation Report for Army Corps of Engineers. Wetland Resources, Inc., April 8, 2016,
- Wetland Mitigation Plan for Army Corps of Engineers (dated April 8, 2016)
- Stormwater Pollution Prevention Plan (Sheet 14/14 of LDA Site Plan) Wetland Resources, Inc., May 3, 2016,
- Biological Evaluation. Wetland Resources, Inc., March 31, 2016,
- May 19, 2016 Addendum to Cultural Resources Assessment for the Stanwood to Camano Island 115kV Transmission Line Project- Tierra Right-of-Way Services, Ltd. Report No. 2014-160 (Phase II - Modified Site Plan),

9. Do you know whether applications are pending for governmental approvals of other proposals directly affecting the property covered by your proposal? If yes, explain.

None known.

10. List any government approvals or permits that will be needed for your proposal, if known.

Snohomish County
- Land Disturbing Activity Permit
- Shoreline Substantial Development Permit
- Flood Hazard Permit

Island County
- Master Land Development Permit
- Grading Permit
- Critical Areas Permitted Use
- Flood Hazard Permit
City of Stanwood
 Grading Permit
 Flood Hazard Permit

Army Corps of Engineers
 Nationwide Permit 12 for wetland fill

Washington Dept. of Ecology
 Water Quality Certification
 Coastal Zone Management Consistency

Washington State Department of Natural Resources
 Aquatic Land Lease

Washington State Department of Transportation
 Franchise Consolidation

Washington Department of Fish and Wildlife
 Hydraulic Project Approval

Department of Archaeology and Historic Preservation
 State Historic Preservation Office Approval

Burlington Northern Santa Fe Railroad
 License for Electrical Supply Line across or along Railway Property

11. Give a brief, complete description of your proposal, including the proposed uses and the size of the project and site. There are several questions later in this checklist that ask you to describe certain aspects of your proposal. You do not need to repeat those answers on this page.

The proposed project includes a new 5.3-mile overhead 115kV transmission line terminating at the North Stanwood and Camano substations and a 2.7-mile overhead 115kV transmission line rebuild terminating at the North Stanwood substation and Smith Road (Camano Island). 3.8 miles will include a new District owned fiber optic line. The project will be conducted in two phases. Phase I is the new 115kV transmission line that will provide additional electric service capacity to Camano Island. Phase II is the partial rebuild of the existing 115kV transmission line that serves Camano Island, which will also increase electric service capacity. This project will add a second 115 kV feed to add service reliability for Camano Island and west Stanwood.

The project spans portions of the city of Stanwood, unincorporated Snohomish County and unincorporated Island County. In Island County, development activities occur primarily along the south side of SR532. In Snohomish County and Stanwood, development activities occur primarily in actively cultivated fields in the historic floodplain of the Stillaguamish River. Development activities will include installation of new poles, installation of pole framing and wire, and removal of old poles. Following
the District work, telephone and cable companies will transfer their utilities and remove poles at approximately 18 locations.

For the purpose of organization, all development activities are subdivided into distinct “Work Areas.” Work Areas are used to describe project actions at a given location, such as pole installation, pole replacement, attaching 115kV line to existing poles, etc. Development activities are described by Work Area in the table below, and Work Areas are depicted on the associated maps. Phase I includes Work Areas 1-91. Phase II includes Work Areas 100-173.

TABLE 1: Development Activities by Work Area
Refer to Critical Area Studies listed in item 8 above.

<table>
<thead>
<tr>
<th>Work Area</th>
<th>Development Activity</th>
<th>Work Area</th>
<th>Development Activity</th>
<th>Work Area</th>
<th>Development Activity</th>
<th>Work Area</th>
<th>Development Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wire to Existing Pole</td>
<td>42</td>
<td>New Pole (1)</td>
<td>83</td>
<td>New Pole (1)</td>
<td>133</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>2</td>
<td>Wire to Existing Pole</td>
<td>43</td>
<td>Existing Pole TBR (1)</td>
<td>84</td>
<td>New Pole (1)</td>
<td>134</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>3</td>
<td>New Pole (1)</td>
<td>44</td>
<td>Wire to Existing Pole</td>
<td>85</td>
<td>New Pole (1)</td>
<td>135</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>4</td>
<td>New Pole (1)</td>
<td>45</td>
<td>Wire to Existing Pole</td>
<td>86</td>
<td>New Pole (1)</td>
<td>136</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>5</td>
<td>New Pole (1)</td>
<td>46</td>
<td>Wire to Existing Pole</td>
<td>87</td>
<td>New Pole (1)</td>
<td>137</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>6</td>
<td>New Pole (1)</td>
<td>47</td>
<td>Wire to Existing Pole</td>
<td>88</td>
<td>New Pole (1)</td>
<td>138</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>7</td>
<td>New Pole (1)</td>
<td>48</td>
<td>Wire to Existing Pole</td>
<td>89</td>
<td>New Pole (1)</td>
<td>139</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>8</td>
<td>New Pole (1)</td>
<td>49</td>
<td>Wire to Existing Pole</td>
<td>90</td>
<td>New Pole (1)</td>
<td>140</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>9</td>
<td>New Pole (1)</td>
<td>50</td>
<td>Wire to Existing Pole</td>
<td>91</td>
<td>Wire to Existing Pole</td>
<td>141</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>10</td>
<td>New Pole (1)</td>
<td>51</td>
<td>Wire to Existing Pole</td>
<td>101</td>
<td>Wire to Existing Pole</td>
<td>142</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>11</td>
<td>New Pole (1)</td>
<td>52</td>
<td>Existing Pole TBR (1)</td>
<td>102</td>
<td>Existing Pole TBR (1)</td>
<td>143</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>12</td>
<td>New Pole (1)</td>
<td>53</td>
<td>New Pole (1)</td>
<td>103</td>
<td>New Pole (1)</td>
<td>144</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>13</td>
<td>New Pole (1)</td>
<td>54</td>
<td>Existing Pole TBR (1)</td>
<td>104</td>
<td>New Pole (1)</td>
<td>145</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>14</td>
<td>New Pole (1)</td>
<td>55</td>
<td>New Pole (1)</td>
<td>105</td>
<td>New Pole (1)</td>
<td>146</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>15</td>
<td>New Pole (1)</td>
<td>56</td>
<td>Existing Pole TBR (1)</td>
<td>106</td>
<td>Existing Pole TBR (1)</td>
<td>147</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>16</td>
<td>New Pole (1)</td>
<td>57</td>
<td>New Pole (1)</td>
<td>107</td>
<td>New Pole (1)</td>
<td>148</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>17</td>
<td>New Pole (1)</td>
<td>58</td>
<td>Existing Pole TBR (1)</td>
<td>108</td>
<td>Existing Pole TBR (1)</td>
<td>149</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>18</td>
<td>New Pole (1)</td>
<td>59</td>
<td>New Pole (1)</td>
<td>109</td>
<td>New Pole (1)</td>
<td>150</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>19</td>
<td>New Pole (1)</td>
<td>60</td>
<td>Existing Pole TBR (1)</td>
<td>110</td>
<td>Existing Pole TBR (1)</td>
<td>151</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>20</td>
<td>New Pole (1)</td>
<td>61</td>
<td>New Pole (1)</td>
<td>111</td>
<td>New Pole (1)</td>
<td>152</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>21</td>
<td>New Pole (1)</td>
<td>62</td>
<td>Existing Pole TBR (1)</td>
<td>112</td>
<td>New Pole (1)</td>
<td>153</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>22</td>
<td>New Pole (1)</td>
<td>63</td>
<td>New Pole (1)</td>
<td>113</td>
<td>Existing Pole TBR (1)</td>
<td>154</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>23</td>
<td>New Pole (1)</td>
<td>64</td>
<td>New Pole (1)</td>
<td>114</td>
<td>Wire to Existing Pole</td>
<td>155</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>24</td>
<td>New Pole (1)</td>
<td>65</td>
<td>New Pole (1)</td>
<td>115</td>
<td>None Proposed</td>
<td>156</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>25</td>
<td>New Pole (1)</td>
<td>66</td>
<td>New Pole (1)</td>
<td>116</td>
<td>None Proposed</td>
<td>157</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>26</td>
<td>New Pole (1)</td>
<td>67</td>
<td>New Pole (1)</td>
<td>117</td>
<td>Wire to Existing Pole</td>
<td>158</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>27</td>
<td>New Pole (1)</td>
<td>68</td>
<td>New Pole (1)</td>
<td>118</td>
<td>Existing Pole TBR (1)</td>
<td>159</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>28</td>
<td>New Pole (1)</td>
<td>69</td>
<td>New Pole (1)</td>
<td>119</td>
<td>New Pole (1)</td>
<td>160</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>29</td>
<td>New Pole (1)</td>
<td>70</td>
<td>New Pole (1)</td>
<td>120</td>
<td>Existing Pole TBR (1)</td>
<td>161</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>30</td>
<td>New Pole (1)</td>
<td>71</td>
<td>New Pole (1)</td>
<td>121</td>
<td>New Pole (1)</td>
<td>162</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>31</td>
<td>New Pole (1)</td>
<td>72</td>
<td>New Pole (1)</td>
<td>122</td>
<td>Existing Pole TBR (1)</td>
<td>163</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>32</td>
<td>New Pole (1)</td>
<td>73</td>
<td>New Pole (1)</td>
<td>123</td>
<td>New Pole (1)</td>
<td>164</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>33</td>
<td>New Pole (1)</td>
<td>74</td>
<td>New Pole (1)</td>
<td>124</td>
<td>Existing Pole TBR (1)</td>
<td>165</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>34</td>
<td>New Pole (1)</td>
<td>75</td>
<td>New Pole (1)</td>
<td>125</td>
<td>New Pole (1)</td>
<td>166</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>35</td>
<td>New Pole (1)</td>
<td>76</td>
<td>New Pole (1)</td>
<td>126</td>
<td>Existing Pole TBR (1)</td>
<td>167</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>36</td>
<td>New Pole (1)</td>
<td>77</td>
<td>New Pole (1)</td>
<td>127</td>
<td>New Pole (1)</td>
<td>168</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>37</td>
<td>New Pole (1)</td>
<td>78</td>
<td>New Pole (1)</td>
<td>128</td>
<td>None Proposed</td>
<td>169</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>38</td>
<td>New Pole (1)</td>
<td>79</td>
<td>New Pole (1)</td>
<td>129</td>
<td>Existing Pole TBR (1)</td>
<td>170</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>39</td>
<td>New Pole (1)</td>
<td>80</td>
<td>New Pole (1)</td>
<td>130</td>
<td>None Proposed</td>
<td>171</td>
<td>New Pole (1)</td>
</tr>
<tr>
<td>40</td>
<td>New Pole (1)</td>
<td>81</td>
<td>New Pole (1)</td>
<td>131</td>
<td>Existing Pole TBR (1)</td>
<td>172</td>
<td>Existing Pole TBR (1)</td>
</tr>
<tr>
<td>41</td>
<td>New Pole (1)</td>
<td>82</td>
<td>New Pole (1)</td>
<td>132</td>
<td>New Pole (1)</td>
<td>173</td>
<td>Wire to Existing Pole</td>
</tr>
</tbody>
</table>
The overall project (both phases) includes setting 108 new poles, removing 39 existing poles, adding conductors to the new poles and re-conductoring 15 existing poles. Through the installation of 108 poles and the removal of 39 existing poles, impervious surfaces will increase by 1,733 square feet. Poles in Critical Areas will be made of inert materials (steel or fiberglass).

Fifty-seven (57) new poles will be set in wetlands and eighteen (18) existing wood poles will be removed, for a total of 1,208 square feet of total wetland fill. Forty-four (44) poles will be set in stream/wetland buffers and twenty-one (21) existing wood poles will be removed, for a total of 598 square feet of permanent impact in buffers. Further descriptions of Phase I and Phase II activities are provided below.

Most new poles will be installed by direct-burial, which requires gravel and/or concrete backfill. In three locations in the vicinity of Davis Slough, poles could be on vibratory caissons. Backfill in wetlands constitutes wetland fill, so work in wetlands will not begin until the project has been reviewed by US Army Corps of Engineers and Washington Department of Ecology. No access roads, pads or other ground disturbance are proposed within wetlands or below Ordinary High Water Marks for streams and shorelines. Construction access to pole locations in wetlands near Davis Slough will be achieved by temporary matting.

Wetland and buffer enhancement are proposed as compensatory mitigation for wetland impacts resulting from this project. Wetland enhancement, totaling 14,171 square feet, and buffer enhancement, totaling 2,085 square feet, is proposed.

The project will include on-going maintenance throughout the life of the equipment. Pole access for inspections and maintenance will be performed using temporary matting, where necessary, to minimize impacts.

12. Location of the proposal. Give sufficient information for a person to understand the precise location of your proposed project, including a street address, if any, and section, township, and range, if known. If a proposal would occur over a range of area, provide the range or boundaries of the site(s). Provide a legal description, site plan, vicinity map, and topographic map, if reasonably available. While you should submit any plans required by the agency, you are not required to duplicate maps or detailed plans submitted with any permit applications related to this checklist.

The project is located within the following Public Land Survey System locators: Township 32N, Range 3E, Sections 20-24, 26, 27, 28, and Township 32N, Range 4E, Section 19.

Phase I
The west end of Phase I begins at the Camano substation (Island County tax ID number 163272), located at 525E North Camano Drive (across the street to the north from Freedom Park). The project crosses North
Camano Drive south into Freedom Park then continues east along the north edge of the park property. From the park the project travels southeast across State Route SR532. The project continues just south of the right-of-way of SR532 to the City of Stanwood. From the intersection of SR532 and 270th St NW (700' east of the river), the project turns north along the boundary between two adjacent parcels with tax parcel ID numbers 32032400305200 and 32032400304700. Where these two parcels meet the Burlington Northern Santa Fe railroad right-of-way, the project turns east on the south side of the railroad tracks. The project continues approximately 800 feet east to the intersection of Old Pacific Highway (102nd Ave NW) and 276th St NW (Lovers Road). The project continues east on the south side of Lovers Road to the intersection with the north-south oriented Great Northern/BNSF railroad tracks. The final segment travels 1,300 feet southeast through parcel 32041900301600 to the north Stanwood substation (tax ID number 32041900309000).

Phase II

The west end of Phase II begins on the north side of SR532 at Smith Road (on Camano Island). The project travels east along the north side of SR532, spanning Davis Slough, at which point it terminates on an existing steel pole on the east slough shoreline. An existing steel pole line spans the West Pass Stillaguamish River and is not part of the project. The project then travels north along the west edge of the BNSF railroad tracks, then to the east along the north side of the tracks. The line continues east along the north side of the BNSF tracks/Lovers Road and crosses Old Pacific Highway, where it meets the north-south oriented Great Northern/BNSF railroad ROW, and then turns southeast to the North Stanwood substation.
FIGURE 1: VICINITY AND ROUTE MAPS

PUD STANWOOD TO CAMANO ISLAND 115KV
TRANSMISSION LINE
VICINITY MAP—PROPOSED PROJECT

VICTORY MAP

SITE
I-5
SR34
SR0
CAMANO
ISL
PUGET
SOUND
SR532
SR530
SR531

OLD PACIFIC HWY
STILLAGUAMISH
RIVER
WEST PASS
LEQUE
ISLAND
NORTH
STANWOOD
SUBSTATION
CITY OF
STANWOOD

PHASE I
BUILD ROUTE
PHASE II
BUILD ROUTE

LIVINGSTON
BAY
PORT SUSAN

JUNIPER BEACH RD
N. SMITH RD
SR532
N. GOOD RD
REDDAIN RD
HRD
FENALADY RD
HANSDAN RD
CUMANO
SUBSTATION
SKAGIT BAY

5,000 FEET
10,000 FEET

APPLICANT: Snohomish County PUD No.1
Attn: Trinh Ly
PO Box 1107
Everett, WA 98206-1107
REFERENCE #: NWS-2016-530
LOCATION:

Project Vicinity Map

Wetland Resources, Inc.
211 15th Ave. W, Suite 305
Everett, WA 98201
Phone: (425) 337-3174
Fax: (425) 337-3045
Email: mailbox@wetlandresources.com
FIGURE 2: VICINITY OF MITIGATION SITE

PUD STANWOOD TO CAMANO ISLAND 115KV TRANSMISSION LINE
VICINITY MAP-MITIGATION SITE

APPLICANT: Snohomish County PUD No.1
Attn: Trinh Ly
PO Box 1107
Everett, WA 98206-1107
REFERENCE #: NWS-2016-530
LOCATION: SEY-04-BT-04, TWP 40N, RGE 18W, WM
5-acre parcel located NW of the intersection of 268th St NW and 64th Ave NW
Mitigation Site Vicinity Map
B. ENVIRONMENTAL ELEMENTS

1. Earth

a. General description of the site (circle one): **Flat, rolling**, hilly, steep slopes, mountainous, other _____________

 The western half of the project area (Camano Island) has rolling topography. The eastern half of the project, within the floodplain of the Stillaguamish River, is flat.

b. What is the steepest slope on the site (approximate percent slope)?

 The steepest slopes along the route are located along the south side of SR532, from nearly the eastern edge of Camano Island to approximately 1,000 feet west. The grade is approximately 30 percent (perpendicular to SR532).

c. What general types of soils are found on the site (for example, clay, sand, gravel, peat, muck)? If you know the classification of agricultural soils, specify them and note any agricultural land of long-term commercial significance and whether the proposal results in removing any of these soils.

 The following types of soils are mapped on the site:
 - Coveland loam*
 - Mitchell bay gravelly sandy loam*
 - Everett-Alderwood complex
 - Coupeville loam*
 - Puget silty clay loam*
 - Snohomish silt loam*
 - Fluvaquents, tidal*
 - Beaches-Endoaquents, tidal Xerotherms association*

 *Agricultural land occurs in most of these soil types.

d. Are there surface indications or history of unstable soils in the immediate vicinity? If so, describe.

 No surface indications or history of unstable soils are known.

e. Describe the purpose, type, total area, and approximate quantities and total affected area of any filling, excavation, and grading proposed. Indicate source of fill.

 The project includes pole installation, pole removal, conductoring and reconductoring only. No access roads are required. No grading except for pole holes is necessary. Fill will be limited to backfill for new and removed poles.

 The project requires installation of 108 new poles and removal of 39
existing poles. New impervious surface totals 1,733 square feet. Wetland fill totals 1,208 square feet (57 new poles, removal of 18 existing poles). Buffer impacts total 598 square feet (44 new poles, removal of 21 existing poles).

f. Could erosion occur as a result of clearing, construction, or use? If so, generally describe.

Erosion is possible, however, the duration of land-disturbing activities will be short. The contractor will employ Best Management Practices (BMPs), as described in the Island County Grading Permit, the Snohomish County Land Disturbing Activity Permit, and the City of Stanwood Grading Permit. Likely BMPs applicable to this project include retaining vegetation, clearly marking construction and clearing limits, temporary mulching, and temporary and permanent seeding of exposed soils. In areas disturbed as a result of construction activity, the affected areas will be immediately re-seeded afterward to limit the potential for erosion. Erosion and sedimentation control measures will be described in detail for the project in the Stormwater Pollution Prevention Plan and/or the Temporary Erosion and Sedimentation Control Plans required by local and state agencies.

Erosion could occur as a result of excavation, but will be limited by the very small areas of impact and through the use of Best Management Practices.

g. About what percent of the site will be covered with impervious surfaces after project construction (for example, asphalt or buildings)?

Less than one percent.

h. Proposed measures to reduce or control erosion, or other impacts to the earth, if any:

Standard best management practices will be employed to reduce and/or control erosion, which may include:
- Retention of existing vegetation
- Clearly marked construction access and clearing limits
- Temporary and permanent seeding
- Silt fencing and straw wattles
- Mulching (including straw)

2. Air

a. What types of emissions to the air would result from the proposal (i.e., dust, automobile, odors, industrial wood smoke) during construction and when the project is completed? If any, generally describe and give approximate quantities if known.

Short term direct emissions from vehicles and construction equipment will occur during the construction phase of the project. Odors from construction materials may occur, engine exhaust will be present during construction, and dust may be generated during short term clearing and
grading activities. A temporary increase in carbon dioxide, nitrous oxide and methane emissions from off road, on road and possibly stationary sources involved in the construction phase will occur during the period of active construction and end when construction is complete.

The greenhouse gas emissions associated with phase I of this project are estimated to be as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>112.58 metric tons</td>
</tr>
<tr>
<td>Methane</td>
<td>2.83 kg</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>3.39 kg</td>
</tr>
<tr>
<td>Total in CO2 equivalents</td>
<td>113.66 metric tons</td>
</tr>
</tbody>
</table>

The greenhouse gas emissions associated with phase II of this project are estimated to be as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide</td>
<td>86.93 metric tons</td>
</tr>
<tr>
<td>Methane</td>
<td>2.12 kg</td>
</tr>
<tr>
<td>Nitrous oxide</td>
<td>2.62 kg</td>
</tr>
<tr>
<td>Total in CO2 equivalents</td>
<td>87.77 metric tons</td>
</tr>
</tbody>
</table>

Long-term emissions for the completed project are expected to remain consistent with existing emissions resulting from daily operations. These include emissions that may be associated with routine maintenance and/or repair of the completed project.

b. Are there any off-site sources of emissions or odor that may affect your proposal? If so, generally describe.

Off-site emissions sources and climate change may have the potential to affect the proposal due to regional effects and specific effects at the local site, such as impacts to the aforementioned river systems and floodplains.

The Puget Sound Clean Air Agency (PSCAA) and the Northwest Clean Air Agency (NWCAA) have established local ambient air standards for six criteria air pollutants and the Agency monitors and reports on these air quality observations annually. These criteria air pollutants are:

- Particulate Matter (10 micrometers and 2.5 micrometers in diameter)
- Ozone
- Nitrogen Dioxide
- Carbon Monoxide
- Sulfur Dioxide
- Lead

Efforts to address air quality in the region have successfully achieved attainment goals for several of the criteria pollutants; however, observation sites in King, Pierce, and Snohomish counties continue to exceed the Puget Sound Clean Air Agency local PM2.5 health goal for fine particulate matter. Skagit and Island Counties are monitored by the Northwest Clean Air Agency (NWCAA), a parallel agency to the PSCAA.
Skagit and Island counties, along with Whatcom County, have some of the cleanest air in the country. Observations at sites monitoring ozone in large population centers (Seattle, Everett) indicate ozone levels remain a concern in the region. Carbon dioxide and methane are additional emissions of interest associated with climate change with the potential to affect weather conditions in the Snohomish and Island County region.

Potential impacts in the Pacific Northwest due to climate change have been assessed through the National Oceanic and Atmospheric Administration U.S. Global Change Research Program, and summarized in the 2017 report titled "Climate Science Special Report: Fourth National Climate Assessment, Volume 1." The projected changes include declining springtime snowpack, reduced summer stream flows, warmer water temperatures, higher ambient temperatures and rising sea levels. Such changes could result in reduced water supplies, and thus the need to seek new sources or methods to meet future water demand.

c. Proposed measures to reduce or control emissions or other impacts to air, if any:

All passenger vehicles and construction related vehicles and equipment will be properly maintained and will comply with applicable emission control devices and federal and state air quality regulations for exhaust pipe emissions. Idling of combustion engines will be minimized and equipment will be turned off when applicable. Most air quality impacts from this project are anticipated to be caused by gas or diesel powered vehicles and equipment.

Erosion control and dust control measures will be provided as needed. Best management practices to limit deposition of soil on roadways will be implemented and active dust suppression measures will be evaluated and applied as necessary.

3. Water

a. Surface Water:

1) Is there any surface water body on or in the immediate vicinity of the site (including year-round and seasonal streams, saltwater, lakes, ponds, wetlands)? If yes, describe type and provide names. If appropriate, state what stream or river it flows into.

Yes. In the immediate vicinity of the site, 26 wetlands (Wetlands A-Z) and seven streams (Streams A-G) were observed. Three of the observed streams are named, the West Pass Stillaguamish River (Stream E), South Douglas Slough (Stream F), and Davis Slough (Stream G). The West Pass Stillaguamish River is a Type S stream that flows from the divergence of the mainstem Stillaguamish River directly into Puget Sound’s Skagit Bay. South Douglas Slough is a Type F stream that flows south along the west edge of the city of Stanwood, directly into the Stillaguamish River near the West Pass/South Pass divergence. Davis Slough is a Type S stream that flows
between Skagit Bay and Port Susan. The remaining observed streams are either artificially constructed road drainage features flowing parallel to SR532 (Type F and Type Ns), or artificially constructed agricultural channels (Type F) that outlet directly to Port Susan/Skagit Bay primarily through tidegates. All water features are documented and described in the Critical Areas Reports for the appropriate jurisdiction in which they occur (Wetland Resources, Inc. March 31, 2016; April 8, 18, and 28, 2016.)

2) Will the project require any work over, in, or adjacent to (within 200 feet) the described waters? If yes, please describe and attach available plans.

Yes. Pole installation and removal will occur within several wetland areas. Please see Critical Areas Reports for specifics. Conductors in Phase I will be strung over the West Pass Stillaguamish River and South Douglas Slough. Conductors in Phase II will be strung over Davis Slough. No ground engaging work is proposed within the ordinary high water marks of any streams, rivers or sloughs. Proposed work will occur within 200 feet of all of the aforementioned wetlands and streams.

Poles set in stable soils (outside the floodplain of the Stillaguamish) require excavation of a three-foot diameter hole, backfilled with gravel. Poles set in less stable soils (Stillaguamish floodplain) require excavation of a 5-foot diameter hole. A 4-foot diameter steel culvert will be set inside the hole, with the new pole placed inside of the culvert. The area between the pole and the culvert will be backfilled with gravel, and the area between the culvert and native soils will be backfilled with controlled density fill material (CDF).

3) Estimate the amount of fill and dredge material that would be placed in or removed from surface water or wetlands and indicate the area of the site that would be affected. Indicate the source of fill material.

Current design anticipates 57 new poles in wetlands, 801 cubic yards of excavation and 536 cubic yards of backfill. The 18 existing poles to be removed from wetlands will require 94 cubic yards of excavation and 10 cubic yards of backfill (around new poles and in removed pole holes). These quantities may be adjusted by permit specific constraints, soil or site conditions that can only be determined at the time of excavation, or other constraints that the project may need to adapt to. Adjustments to numbers of poles in wetlands or other critical areas, backfill quantities, and precise site selection will meet all permit and regulatory requirements, and if adjusted, will not change the degree or general types of impacts.

4) Will the proposal require surface water withdrawals or diversions? Give general description, purpose, and approximate quantities if known.

No surface water withdrawals or diversions are required.

5) Does the proposal lie within a 100-year flood plain? If so, note location on the site plan.
Yes. The eastern half of the project, and all work occurring in Snohomish County and the City of Stanwood, is within the 100-year floodplain. In phase I, thirty-seven (37) new poles will be placed in the floodplain and six (6) existing poles will be removed. In phase II, thirty-two (32) new poles will be placed in the floodplain and twenty-nine (29) will be removed. Sixty-nine (69) total new poles will be placed in the floodplain, and thirty-five (35) existing poles will be removed. Locations are shown on the project plans.

6) Does the proposal involve any discharges of waste materials to surface waters? If so, describe the type of waste and anticipated volume of discharge.

No discharge of waste materials is proposed. Inert materials (steel and fiberglass) are proposed for all new poles installed in or near to surface waters.

b. Ground Water:

1) Will groundwater be withdrawn from a well for drinking water or other purposes? If so, give a general description of the well, proposed uses and approximate quantities withdrawn from the well. Will water be discharged to groundwater? Give general description, purpose, and approximate quantities if known.

No groundwater will be withdrawn.

2) Describe waste material that will be discharged into the ground from septic tanks or other sources, if any (for example: domestic sewage; industrial waste materials, agricultural wastes; etc.) Describe the general size of the system, the number of such systems, the number of houses to be served (if applicable), or the number of animals or humans the system(s) are expected to serve.

The project will not generate sewage or other wastes. Portable toilets will be placed on-site for construction workers, if necessary. A licensed company will service the toilets.

c. Water Runoff (including storm water):

1) Describe the source of runoff (including storm water) and method of collection and disposal, if any (include quantities, if known). Where will this water flow? Will this water flow into other waters? If so, describe.

Runoff generated during staging, construction, operations, and maintenance activities associated with the project will be entirely from stormwater, as no other materials generating runoff are proposed at part of the project. The following stormwater controls will be utilized, as described in the Stormwater Pollution Prevention Plan:

- Emphasize erosion control rather than sediment control.
- Minimize the extent and duration of the soil area exposed.
- Keep runoff velocities low.
- Retain sediment on site.
• Infiltrate runoff on site.
• Monitor site and maintain all erosion and sediment control measures including through storm events.
• Schedule major earthwork during the dry season.

2) Could waste materials enter ground or surface waters? If so, generally describe.

Waste materials entering ground or surface water is not likely. The primary waste material leaving the site will be stormwater.

3) Does the proposal alter or otherwise affect drainage patterns in the vicinity of the site? If so, describe.

No alterations to drainage patterns will occur.

4. Plants

a. Check the types of vegetation found on the site:
 ___ deciduous tree: alder, maple, aspen, other
 X ___ evergreen tree: fir, cedar, pine, other
 ___ shrubs
 ___ grass
 ___ pasture
 X ___ crop or grain
 ___ orchards, vineyards or other permanent crops
 X ___ wet soil plants: cattail, buttercup, bullrush, skunk cabbage, other
 ___ water plants: water lily, eelgrass, milfoil, other
 ___ other types of vegetation

b. What kind and amount of vegetation will be removed or altered?

 Current planning suggests that no trees will be removed as a result of the
project. Trees that encroach on the easement may need to be trimmed over the life of the project to allow for electrical safety clearance of the transmission line. The District and/or property owners may remove shrubs and grasses during construction and will replant specimens as part of the post-construction process. Ongoing maintenance will include tree trimming or removal, as needed, to ensure safety and service reliability.

Some alteration of wetland vegetation may also be necessary where that vegetation encroaches on electrical safety clearance of the current and proposed electrical transmission lines. Additionally, some vegetation may be temporarily impacted due to construction access and installation of poles in wet areas.

Vegetation impacts will primarily be limited to small patches of grasses.

c. List threatened or endangered species known to be on or near the site.

Consultation with the Washington State Department of Natural Resources indicates that there are no records for rare plants or high quality native ecosystems in the vicinity of the project. Fieldwork by Wetland Resources, Inc. did not identify any rare, threatened or endangered plant specimens or viable habitat for those species within the project area.

d. Proposed landscaping, use of native plants, or other measures to preserve or enhance vegetation on the site, if any:

Small patches of grasses that will be disturbed will be reseeded with grass seed. No landscaping or other use of native plants is proposed.

5. Animals

a. List any birds and other animals which have been observed on or near the site or are known to be on or near the site. Examples include:

 Birds: hawk, heron, eagle, songbirds, other: Trumpeter Swans, gulls, Snow Geese, ducks
 Mammals: deer, bear, elk, beaver, other.
 Fish: bass, salmon, trout, herring, shellfish, other.

b. List any threatened or endangered species known to be on or near the site.

 Chinook Salmon (Oncorhynchus tshawytscha), Steelhead (Oncorhynchus mykiss), and Bull Trout (Salvelinus confluentus) are known to use the Stillaguamish River and nearby marine waters, all three of which are federally listed as threatened species. Other species that may be present in nearby marine waters include Bocaccio Rockfish (Sebastes paucispinis, Endangered), Canary Rockfish (Sebastes pinniger, Threatened), Yelloweye Rockfish (Sebastes ruberrimus, Threatened), Killer Whale (Orcinus orca, Endangered) and Humpback Whale (Megaptera novaeangliae, Endangered). No other threatened or endangered animal species are known to be on or near the site.
c. Is the site part of a migration route? If so, explain.

Yes. The Stillaguamish River is utilized for migration by anadromous fish. The project is also within the Pacific Flyway, which is a migratory bird route.

d. Proposed measures to preserve or enhance wildlife, if any:

To help prevent bird/wire interactions, the proposed transmission line will employ distraction devices that are noticeable to the birds and help them avoid collisions.

e. List any invasive animal species known to be on or near the site.

None known.

6. Energy and Natural Resources

a. What kinds of energy (electric, natural gas, oil, wood stove, solar) will be used to meet the completed project’s energy needs? Describe whether it will be used for heating, manufacturing, etc.

The overall project is an electric system improvement to meet reliability and increased service needs for customers in the surrounding areas.

b. Would your project affect the potential use of solar energy by adjacent properties? If so, generally describe.

Trimming of trees along the transmission route might enhance the use of solar energy for adjacent properties. Otherwise, this project is not expected to affect the potential use of solar energy by adjacent properties.

c. What kinds of energy conservation features are included in the plans of this proposal? List other proposed measures to reduce or control energy impacts, if any:

Staging, construction, operations, and maintenance personnel will turn off non-essential equipment to conserve energy.

7. Environmental Health

a. Are there any environmental health hazards, including exposure to toxic chemicals, risk of fire and explosion, spill, or hazardous waste that could occur as a result of this proposal? If so, describe.

Electric fields and magnetic fields (EMF) are associated with every power delivery system and electrical device. Possible effects upon human health from electric and magnetic fields continue to be investigated, with emphasis directed primarily at magnetic fields. The District looks to the research community for guidance and continues to monitor the research for definitive answers concerning EMF and human health, but current
research findings are inconclusive. There are no established or known levels of human exposure to power line magnetic fields which have been determined to be either safe or harmful.

Gasoline and other petroleum products used in vehicles also have potential environmental health hazards. These will be minimized through careful maintenance of all vehicles, and minimization of environmental and human exposure to these chemicals.

High voltage electrical lines are inherently dangerous under near-contact conditions, and the design of these lines and their maintenance is driven in part by strict national safety and design standards. Lines are located along specific easements and on poles that are difficult to scale to avoid the potential for contact.

1) Describe any known or possible contamination at the site from present or past uses.

None known.

2) Describe existing hazardous chemicals/conditions that might affect project development and design. This includes underground hazardous liquid and gas transmission pipelines located within the project area and in the vicinity.

None known.

3) Describe any toxic or hazardous chemicals that might be stored, used, or produced during the project’s development or construction, or at any time during the operating life of the project.

None, except those listed above as part of trucks and heavy equipment.

4) Describe special emergency services that might be required.

No emergency services beyond normal community emergency response.

5) Proposed measures to reduce or control environmental health hazards, if any:

In 2005, the State of Washington amended the “Safety Requirements for Electrical Workers”, Washington Administrative Code (WAC) chapter 296-45, to require that “All electrical utilities and entities operating transmission and distribution facilities within the State of Washington must design, construct, operate, and maintain their lines and equipment according to the requirements of the 2012 National Electric Safety Code (NESC) (ANSI-C2).” This is referenced under the paragraph WAC 296-45-045. The upgraded power line will be designed in accordance with the NESC.
b. Noise:

1) What types of noise exist in the area which may affect your project (for example: traffic, equipment operation, other)?

 None.

2) What types and levels of noise would be created by or associated with the project on a short-term or a long-term basis (for example: traffic, construction, operation, other)? Indicate what hours noise would come from the site.

 Construction of the proposed power line will generate short-term and localized noise impacts caused primarily by equipment operation (i.e., line trucks, backhoes, pickup trucks, cranes) associated with pole delivery, installation, wire installation, directional boring, and other related activities. While the impact will be temporary, noise from construction activities will be noticeable.

 Noise from construction equipment will primarily occur on weekdays during normal work hours, daylight only, planned during summers of 2017 and 2018. There may be occasions when construction activities will occur during weekend hours to reduce power outage impacts to District customers.

 Expected terrestrial sound ranges for typical construction equipment:
 - Chainsaws 90-110 decibels (dB)
 - Backhoes (84-93 dB)
 - Dump trucks (79-83 dB)
 - Ambient background noise (70-80 dB)
 - Vibrating hammers (101 dB)

2) Proposed measures to reduce or control noise impacts, if any:

 Staging, construction, operations, and maintenance personnel will turn off non-essential equipment to reduce the amount of noise generated during on-site activities. Additionally, construction personnel will limit work to daylight hours, primarily during the week, thereby eliminating project-related noise during the evening, weekend and nighttime hours.

 The transmission line will be maintained adequately to ensure that hardware connecting the conductor line is tight, thus minimizing the potential for corona.

8. Land and Shoreline Use

 a. What is the current use of the site and adjacent properties? Will the proposal affect current land uses on nearby or adjacent properties? If so, describe.

 The project area consists primarily of agricultural properties abutting the rights-of-way of SR532 and Lovers Road, with some residential and publicly-owned properties. The overall project covers 8.0 lineal miles, with non-exclusive use as an Electric Transmission Corridor. Other uses of the
corridor are primarily agricultural, but also include urban and rural residential, and park.

b. Has the project site been used as working farmlands or working forest lands? If so, describe. How much agricultural or forest land of long-term commercial significance will be converted to other uses as a result of the proposal, if any? If resource lands have not been designated, how many acres in farmland or forest land tax status will be converted to nonfarm or nonforest use?

Much of the western and eastern portions of the project area are currently used as working farmland. Poles will be installed within active farmland. The project corridor will be designated as a non-exclusive use, and agriculture will continue everywhere except in the immediate vicinity of the new poles. Loss of farmland associated with this project is approximately twenty square feet at each pole location (20 SF per pole, net total 700 SF). See Figure 3 below for active farmland parcels in the vicinity of the project.
1) Will the proposal affect or be affected by surrounding working farm or forest land normal business operations, such as oversize equipment access, the application of pesticides, tilling, and harvesting? If so, how:

The project will temporarily disrupt working farmland during pole installation and wiring. No ongoing impacts are anticipated other than periodic maintenance of the electric facilities.

c. Describe any structures on the site.

Many building structures are present along the project corridor, including residential and commercial, and agricultural structures. There is an existing transmission and distribution line along the route consisting of several single pole structures.

d. Will any structures be demolished? If so, what?

The portion of the existing transmission and distribution structures that are being replaced will be removed after the existing or new wires are transferred to the new poles. No existing building structures will be removed.

e. What is the current zoning classification of the site?

The site is currently zoned as follows:
Unincorporated Island County
Rural Village (RV), Rural Agriculture (RA), Rural (R), Commercial Agriculture (CA), Rural Service (RS), Camano Gateway Village (CGV)

Unincorporated Snohomish County
Agriculture (A-10), Rural Conservation (RC)

City of Stanwood
Single Family Residential 7,000 SF minimum lot size (SR 7.0), General Industrial (GI)

f. What is the current comprehensive plan designation of the site?

The current comprehensive plan designation of the site is as follows:
Unincorporated Island County
Rural Village (RV), Rural Agriculture (RA), Rural (R), Commercial Agriculture (CA), Rural Service (RS), Camano Gateway Village (CGV)

Unincorporated Snohomish County
Agriculture (A-10), Rural Conservation (RC)

City of Stanwood
Single Family Residential 7,000 SF minimum lot size (SR 7.0), General Industrial (GI)
g. If applicable, what is the current shoreline master program designation of the site?

Unincorporated Island County
Development does not occur in shoreline areas

Unincorporated Snohomish County
Development occurs within the Resource shoreline environment

City of Stanwood
Development does not occur in shoreline areas

h. Has any part of the site been classified as a critical area by the city or county? If so, specify.

Unincorporated Island County
The project occurs outside of all county-mapped critical areas except Davis Slough which is the boundary between Island County to the west and Snohomish County to the east.

Unincorporated Snohomish County
The project occurs within the 100-year floodplain of the Stillaguamish River, and spans South Douglas Slough and Davis Slough.

City of Stanwood
The project occurs outside of all city-mapped critical areas

Please see Wetland Delineation reports and Critical Areas reports for each jurisdiction for more complete information on all areas that meet city and county code defined criteria for critical areas.

i. Approximately how many people would reside or work in the completed project?

None.

j. Approximately how many people would the completed project displace?

None.

k. Proposed measures to avoid or reduce displacement impacts, if any:

None.

l. Proposed measures to ensure the proposal is compatible with existing and projected land uses and plans, if any: [help]

Prior to commencing work on-site, the District will secure all necessary permits. This process will serve as verification that the proposal is consistent with projected land uses and plans.

m. Proposed measures to ensure the proposal is compatible with nearby
agricultural and forest lands of long-term commercial significance, if any:

Electrical service is compatible with nearby agricultural lands of long-term commercial significance. No commercial forest lands are located in the project area.

9. **Housing**

 a. Approximately how many units would be provided, if any? Indicate whether high, middle, or low-income housing.

 None.

 b. Approximately how many units, if any would be eliminated? Indicate whether high, middle, or low-income housing.

 None.

 c. Proposed measures to reduce or control housing impacts, if any:

 None.

10. **Aesthetics**

 a. What is the tallest height of any proposed structure(s), not including antennas; what is the principal exterior building material(s) proposed?

 The existing transmission and distribution structures are wood and steel poles 40 feet and 70 feet tall. The project will install wood, steel, and/or fiberglass utility poles 75 feet to 85 feet tall with a maximum height of 95 feet above the ground surface. New distribution poles will be 45 feet above the ground line surface.

 b. What views in the immediate vicinity would be altered or obstructed?

 Views will not be significantly altered. The project occurs in the vicinity of an existing utility corridor, however, the existing poles are not as tall as the proposed poles associated with this project. If any view alteration occurs, it will be minimal, impacting rural agricultural land, forest, and some commercial/residential development.

 c. Proposed measures to reduce or control aesthetic impacts, if any:

 New steel poles will be painted to reduce visual impacts.

11. **Light and Glare**

 a. What type of light or glare will the proposal produce? What time of day would it mainly occur?

 The project will not produce light or glare during normal operations.

 b. Could light or glare from the finished project be a safety hazard or interfere with views?
No.

c. What existing off-site sources of light or glare may affect your proposal?

No off-site sources of light or glare are expected to affect the project.

d. Proposed measures to reduce or control light and glare impacts, if any:

None.

12. Recreation

a. What designated and informal recreational opportunities are in the immediate vicinity?

Recreational opportunities include park use in Freedom Park (Camano Island), Heritage Park (Stanwood), a future park near Saratoga Drive (Ovenell Park) and public lands near West Pass Stillaguamish River and Davis Slough.

b. Would the proposed project displace any existing recreational uses? If so, describe.

The new transmission and distribution corridor would not affect recreational uses in the area.

c. Proposed measures to reduce or control impacts on recreation, including recreation opportunities to be provided by the project or applicant, if any:

None.

13. Historic and Cultural Preservation

a. Are there any buildings, structures, or sites, located on or near the site that are over 45 years old listed in or eligible for listing in national, state, or local preservation registers located on or near the site? If so, specifically describe.

A cultural resource assessment was performed in 2015/2016 which shows that there are no known places or objects that are listed or proposed for local preservation. Many of the buildings adjacent to the project are over 45 years old and could be eligible for listing in national, state or local preservation registers.

b. Are there any landmarks, features, or other evidence of Indian or historic use or occupation? This may include human burials or old cemeteries. Are there any material evidence, artifacts, or areas of cultural importance on or near the site? Please list any professional studies conducted at the site to identify such resources.
Evidence of Native peoples or historic use or occupation was observed in the vicinity of proposed development. A Cultural Resources Assessment was prepared for this project (Cultural Resources Assessment for the Stanwood to Camano Island 115kV Transmission Line Project, Tierra Right-of-Way, January 2015, and three addendums through May 2016.) that describes these features.

c. Describe the methods used to assess the potential impacts to cultural and historic resources on or near the project site. Examples include consultation with tribes and the department of archeology and historic preservation, archaeological surveys, historic maps, GIS data, etc.

Methodologies used to assess potential impacts to cultural and historic resources are described in detail within the Cultural Resources Assessment for this project. The determination of probability was based largely upon review and analysis of past environmental and cultural contexts and previous cultural resources studies and sites. Consulted sources include local geologic data, archaeological/historic/ethnographic records from the WA Information System for Architectural and Archaeological Records (WISAARD) database, the WA state Dept. of Archaeology and Historic Preservation (DAHP), the Bureau of Land Management General Land Office survey records database, HistoryLink.org, Historic Map Works, University of Washington Digital Collection, and Washington State University’s Early Washington Maps Collection.

d. Proposed measures to avoid, minimize, or compensate for loss, changes to, and disturbance to resources. Please include plans for the above and any permits that may be required.

If any artifacts, historical or cultural features are uncovered during site clearing and excavation, work will be immediately stopped and contact made with appropriate agencies. An inadvertent discovery plan has been established and will be implemented if necessary.

14. Transportation

a. Identify public streets and highways serving the site, and describe proposed access to the existing street system. Show on site plans, if any.

The project site is located along North Camano Drive, State Route 532, and Lovers Road (276th St NW, Stanwood).

b. Is the site or affected geographic area currently served by public transit? If so, generally describe. If not, what is the approximate distance to the nearest transit stop?

Yes. Public transit is provided in the local area by Island Transit (Island County) and Community Transit (Snohomish County).
c. How many parking spaces would the completed project have? How many would the project eliminate?

None.

d. Will the proposal require any new or improvements to existing roads, streets, pedestrian, bicycle or state transportation facilities, not including driveways? If so, generally describe (indicate whether public or private).

No.

e. Will the project use (or occur in the immediate vicinity of) water, rail, or air transportation? If so, generally describe.

No.

f. How many vehicular trips per day would be generated by the completed project? If known, indicate when peak volumes would occur.

Typical trips per day are less than one, with this length of line needing approximately one vehicle trip per month for maintenance and evaluation over the lifespan of the equipment. ✓

g. Proposed measures to reduce or control transportation impacts, if any:

No.

15. Public Services

a. Would the project result in an increased need for public services (for example: fire protection, police protection, health care, schools, other)? If so, generally describe.

No.

b. Proposed measures to reduce or control direct impacts on public services, if any.

None.

16. Utilities

a. Underline (boldec) utilities currently available at the site: electricity, natural gas, water, refuse service, telephone, sanitary sewer, septic system, storm sewer, cable TV, other __________.

b. Describe the utilities that are proposed for the project, the utility providing the service, and the general construction activities on the site or in the immediate vicinity which might be needed.

Not applicable.
C. SIGNATURE

The above answers are true and complete to the best of my knowledge. I understand that the lead agency is relying on them to make its decision.

Signature: [Signature]

Name of signee: [Name: Matt G. McReynolds Sr.]

Position and Agency/Organization: [Position: Professional Engineer / Sw. Co. PUD]

Date Submitted: [Date: 4/22/2019]